
KSME Journal, VoL 8, No.2, pp. 115-126, 1994

Evaluation of Loop Constraints for Kinematic and Dynamic
Modeling of General Closed-Chain Robotic Systems

Hee-Jun Kang* and R. A. Freeman**
(Received January 6. 1993)

In this article, the two algorithms evaluating loop constraints are presented for kinematic and
dynamic modeling of general closed-chain robotic systems in terms of a system minimum set of
coordinates. These procedures are based on higher order kinematic relationships between
hypothetically open chain reference coordinates(system Lagrangian coordinates) and a set of
independent closed-chain coordinates(system generalized coordinates). These relationships,
along with principle of virtual work, allow for the determination of a system generalized
coordinate based dynamic model in terms of the system Lagrangian coordinate based dynamic
model in terms of the system Lagrangian coordinate based dynamic model(s). The proposed
algorithms for determining/evaluating these relationships, both numerically and symbolically,
are investigated and discussed with respect to their relative computational merits.
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Nomenclature ---------,

The: notational scheme utilized in this paper
underscores the transfer of system dependence
concept central to the modeling algorithm
presented herein. This is accomplished through a
graphically descriptive form whereby parameters
currently being considered dependent are obvi­
ously distinct from those currently being consid­
ered independent. The distinction basically results
by employing subscripts when referring to in­
dependent parameters and allowing superscripts
for dt:pendent parametes. Refer to Figs. I and 2
when considering the following notation.
u : Common(end-effector) coordinate set of

the given mechanism
¢ : Lagrangian coordinate set of the given

mechanism
¢a=a : Independent joint coordinate set of the

given mechanism

•Assistant Professor, Department of Control and
Instrumentation Engineering, University of Ulsan,
Korea

••Assistant Professor, Department of Mechanical
Engineering, The University of Texas, Tx., U. S. A.

¢Jp=p : Dependent JOint coordinate set of the
given mechanism

r¢ : Lagrangian coordinate set of r th chain
r¢a : lndependent joint coordinate set of r th

chain
r¢p : Dependent joint coordinate set of r th

chain

[,.c~] : Open-chain jacobian of u in terms of r¢
rgj : ph column vector of [,.c~]

[rCg] : Sub-matrix of [,.c~] made up of the col­
umns corresponding to r¢a

[,.cg] : Sub-matrix of [rC~] made up of the col­
umns corresponding to r¢p

N L : Number of open-chain paths
Na : Number of independent joints of the

given mechanism
N p : Number of independent )oints of the

given mechanism
Nj : Number of open-chain
No : Dimension of end-effector space of the

given mechanism

1. Introduction

Closed link mechanisms have been widely used
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in both industrial and research applications,

because they are capable of moving faster and

more precisely, and having more structural rigid­

ity than still prevalent serial type robots. Cincin­

nati Milacron T 3, Bendix MA 510 and semi­

direct drive manipulators designed by Asada

(1983) contain single closed kinematic chain,

while spherical shoulder(Cox, 1981) and Stewart

Platform(Stewart, 1965) include multiple closed

kinematic chains in their kinematic structure. In

this paper, we address three different mehtods

which embed the holonomic constraints caused

by the closed kinematic chains into the equations

of motion. They lead to deriving the kinematic

and dynamic modeling parametes in terms of the

generalized coordinate of the constrained robotic

manipulators(system independent coordinate),

not the generalized coordinates of their tree

structured manipulators(Lagrangian coordinates

of the system). The proposing procedures allow

the inverse and forward dynamics of the robotic

manipulators with single or multiple closed
kinematic chain.

Dynamic modeling of closed chain mechanisms

is commonly accomplished by applying the prin­

ciple of virtual work to the model(s) of a corre­

sponding tree structured(open chain) mechanism,

which is obtained by hypothetically cutting

joints(or links) until no closed kinematic chains

exits. Utilizing this basic approach, Wittenbur­

g( 1977) derived the dynamic equation of closed­

chain mechanism based on the motion of tree

structured mechanism by using Lagrange multi­

pliers and finally removing them. The motion

equations he got, are expressed in system Lagran­

gian coordinate set. Integration routine might

violate both the velocity loop constraints and

position loop constraints. As an attempt to rem­

edy this, he uses constraint stabilization method

obtained from Baumgarte's idea(l972). Luh and

Zheng( 1985) formalized this methodology for

inverse dynamic algorithm of closed-chain mecha­

nism with Lagrange multiplier by replacing the

constraints with the effect of unknown additional

joint torques/forces on tree structured mecha­

nism. Nakamura and Ghodoussi(l988) also

obtained the inverse dynamic algorithm without

Lagrange multiplier by using d'Alembert princi­

ple. Wittenburg( 1983) refined his methodology to

get the motion equations of closed chain mecha­

nism in terms of the minimum actuating general­

ized coordinate set of the system. He assumed that

system dependent coordinates can be explicitly

written in independent coordinates and then sym­

bolically differentiate the former with the latter to

obtain constrained kinematic modeling parame­

ters. Otherwise, numerical differentiation process

is necessary. But, this assumption may not be true

for a complicate closed-chain mechanism and

numerical differentiation is liable to be a error

source of the motion of system. Murray and

Lovell( 1989) integrated the whole idea to the

inverse and forward dynamic algorithm in terms

of minimum actuating generalized coordinate set

of closed-chain mechanism. Walker(l985) also

independently proposed a unified approach for

inverse and forward dynamics of closed-chain

systems. However, they might follow the con­

straint embedding procedure of Wittenburg
( 1983).

As seen in above literature, a widely employed

approach to the dynamic modeling of general

closed-chain mechanism can be summarized as

the following three steps:

1. the dynamic modeling of a corresponding

tree structured mechanism, which is obtained by

hypothetically cutting joints(or links) until no

closed kinematic chains exist;

2. the evaluation of higher order kinematic

relationships between a generalized coordinate set

of the tree structured model(s) and a generalized

coordinate set of the closed-chain mechanism;

3. the dynamic modeling of the closed-chain

system via the results of step 1 and step 2 and the

principle of vitrual work.

In this article, we will concentrate on step 2 of

the above procedure, rather than on step 1 and

step 3. However, we will first discuss step 1,

which is related to a judicial selection of

computationally efficeint dynamic algorithm

(Luh, et aI., 1980; Walker and Orin, 1982) for

open-c~ain linkage. Next, step 3 will be addressed
to show which kinematic relationships need to be

evaluated in step 2 to satisfy our purpose. Then,
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• : syIIaD iDdepeDdent
joint

o : syIIaD dopoDdeal
joint

Fig. 1 3DOF planar shoulder

• : syIIaD iDdependalt
joint

o : syIIaD depaIdont
joint

Nx.-3
Ha -3
Np _6

No-3

Fig. 2 The open tree structured mechanism corre­
sponding to Fig. I

three different approaches to obtain these rela­

tionships are presented. The first approach, based
on position constraint differentiation, is discus­
sed, since it is a commonly used method in

robotics and multibody dynamic(Wittenburg,
1983; Paul, 1975). The second approach is based
on thl~ modification of higher order(velocity and

acceh:ration) loop constraints. The third
approach is obtained from the application of a set
isomorphic transformation(Freeman and Tesar,
1988) to the above dynamic modeling prodedure.
The proposed second and third approaches are

diffenmt from the first approach in that they do
not require differentiation. Those approaches,
which embed the kinematic constraints into the
equations of motion of closed-chain mechanism,

can bl~ used with computationally efficient open­
chain dynamic algorithm selected in step I(e. g,
Recursive Newton-Euler algorithm) to obtain an
efficient algorithm for the given closed-chain

system.

2. Dynamic Modeling Algorithm

Here,

where [rIl~] is the NjXNj inertia matrix of the

(I)

(2)

(4)

(3)
u= [rG~] r¢J +([ rCmrrP

= [rG/]rCj>'+ H(4, rrP)

is the Jacobian relating the coordinate u and rrP
with the n'h column rgA' being of dimension No xl.

Generally, the acceleration vector, ii. of a set of

No dependent parameters, u, is obtained from the
differentiation of Eq. (I) with respect to(w.r.t)

time as

where H( 4. r¢J) is a centripetal and Coriolis
acceleration vector of dimension No X 1. The,
required inertial torque, rT~, of the r'h open­
chain can be described in terms of position and
time derivatives of its joint parameters, or in joint
space with the general form as

In this section. we briefly address the result
format of the open-chain model of step I and

develop the transformation equations of step 3 to
show which kinematic relationships need to be
evalua:ted(step 2) for the basic algorithm. This
method is applied to the open-chain mechanism

obtained by hypothetically cutting joints of the
closed-chain mechanism. Here, these cut joint
coordinates are still employed to describe a cho­

sen intermediate coordinate set, often the end­
effector coordinates(e.g.,u) for parallel manipu­
lators. Figure 2 shows the open tree structured

mechanism of Fig. 1.
2.1 Open-chain modeling
Herl~. only the resulting format of the higher­

order kinematics for the r'h open-chain is given.
The problem of position analyzing is not
addressable(except in an iterative, or differential

displacement). Adopting the standard Jacobian
[rG~] representation for the velocity of a vector of
No intermediate coordinates, u, in terms of a set
of Nj independent coordinates, r¢J, of the r'h
open-chain, one has
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where

r th open-chain, with C(r,p, r¢J) being an Nj x 1
vector of centrifugal, Coriolis and gravity terms.
The entire open-chain dynamic of the given
closed-chain mechanism can be expressed is an
augmented form as follws

[Ida]=[C:y[n][c:] (11)
Ca(,p, ¢J)=[C:Y([CW¢Ja

+ [C:YC(,p, ¢J) (12)

Eqs. (9) and (10) show what needs to be evaluat­
ed in step 2 for the inverse dynamic algorith­

m([ C:n and for the forward dynamic

where Ta is the required inertial torque of the

closed chain mechanism, corresponding to ,pa.
Assuming that we have the kinematic

models(which will be developed in the next sec­
tion in three different ways), which relate the

Lagrangian coordinate set(,p) to the independent
coordinate set(,pa) of the given mechanism,

(15)
j(,p)= j(,pa, ,pp)=O
with ,p= [,p~: ,pW

3. Evaluation of Loop Constraints for
Modeling of Closed Chain System

Jacobian matrix, which relates the dependent

As previously mentioned, three different

methods to obtain the kinematic model(both [C:]
and [C:] ¢Ja) are discussed. The first approach,
called position constraint differentiation method,
will be discussed, since it is a commonly used
method in robotics and multibody dynamics,

Then, the two proposed approaches will be dis­
cussed, which are mainly different from the first

approach in that they do not require differentia­
tion.

3.1 Position constraint differentiation
method

Here, a system is assumed to have closed
kinematic chains. The holonomic constraint equa­
tions are expressed in terms of system Lagrangian
coordinates, or sets of dependent and independent
coordinates, as follows

algorithm(both [C:] and ([C:] ¢Ja»' And also,
the modeling parameters obtained from the
open chain kinematics, dynamics and the
kinematic constraints of the given system result in
Eqs. (11) and (12) being decoupled, allowing

them to be independently evaluated for each
chain. Hence, Eqs. (11) and (12) become

NL

[Ida] = ~ [rCaY[rI:,] [rCa] (13)
T=l

• NL . •
Ci,p, ,p)= ~ ([rCay[rIt,]([rCa] ,pa)

r=l

+ [rCaYC<r,p, r¢J)} (14)

where [rCa] and ([rCa]¢Ja) will be shown in Eqs.
(48) and (51), which are the submatrixjsubvector

of [C:] and ([ C:] ¢Ja) corresponding to r th open
chain, respectively.

Equations (13) and (14) show the algorithm
parallelism which will allow synchronous paral­

lel computation of each open-chain modeling. In
fact, the total amount of computational effort of

the closed-chain system is largely dependent on
the computation required for the open-chain

dynamic model.

(6)

(7)

(8)

(5)

T~ • B,p= Ta • B,pa

T~=[I:~] ¢J+ C(,p, ,p)

¢J=[C:]¢Ja
¢"= [C:] ¢;a +([C:n ¢Ja

where the r th diagonal submatrix of [I:~] is

[rI:~], with the r th element of T~ and C(,p,,p)
being rT~ and C(r,p, r¢J), respectively.

2.2 Dynamic modeling of general closed­
chain system

In this section, the principle of virtual work is

employed to show the relationship between the
open chain modeling parameters and the model­
ing parameters of the closed-chain mechanism. By
using the principle of virtual work, the open

chain dynamics can be directly incorporated into
the closed chain dynamics according to

the total system dynamic is obtained as follows

Ta=[C:YT~

= [C:Y ([I:~] ¢"+ C(,p, ¢J)} (9)

In a compact form, the dynamic model will be
expressed in terms of a minimum set of coordi­

nates( ,pa) as

Ta=[ C:y[I:~][C:] ;P"a +[C:Y[I:~]([CW¢Ja
+ [C:YC<,p, ¢J)

= [Ida] ¢'a + Ca(,p, ¢J) (10)
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coord.inates to the independent coordinates, can
be obtained by total differentiation of Eq. (15) as

where p and q imply <pp and <pa, respectively.
Using this definition, Eq. (17) can be written as

where the nonsingularity of matrix [al/ ap] is
assumed, Now, we define the first order internal
kinematic influence coefficient(lKIC) matrix of a
closed-chain system as

obtained directly at the velocity and acceleration
level by using a common intermediate coordinate
set. For example, the end-effector c:oordinate set
of a parallel manipulator(Fig. I) can be a con­
venient common intermediate coordinate set. This
method uses the predetermined open tree structur­
ed kinematic modeling parameters without con­
sidering the position constraint equations for the
constraint determination. The velocity and accel­
eration vector of the end-effector can be expressed
directly in terms of the joint velocities and accel­
erations of the r th chain of the open tree structur­
ed according to Eqs, (I) and (3), as

U=[rG¥]r¢ (21)
u'= [rG¥]r¢'+ H(,.<p, r¢), r= I, 2, "', N L (22)

Eq. (21) implies that there are No X (NL - I)

algebraic equations relating one of the joint veloc­
ity sets to each of the other sets, This can be
expressed as

[IGn¢=[rG¥]r¢, r=2, 3, "', NL (23)

(17)

(16)

(18)

. - [a/J-I[ a/J .<pp- - ap aa <Pa

[GP] = - [lLJ-l[ al J
a ap aa

wherf: p and a imply <pp and <Pa' respectively, and
[all ci'a] is an Np X Na matrix whose i th row and
ph column element is aidaaj and [al/ ap] is an
Np X N p matrix with aidapi as its i th row and jlh

column element. Proceeding furhter by solving
Eq. (16) for ¢p, we have

The direct differentiation of Eq. (19) w.r.t. time
gives

Note that the definitions of the matrices [Gg] and
([Cm given in Eqs. (18) and (20), respectively,
involve explicit partial differentiation or implicit
numerical differentiation of 'the constraints of
Eq. (15) w.r.t. their arguments/time up to the
second order. Actual evaluation of these matrices
can be accomplished either by straghtforward
differentiation of the positional constraint equa­
tiQns according to the definition, which may be a
simple task for planar closed kinematic chains, or
by starting directly from the velocity and acceler­
aton constraint of the closed kinematic chain(see
the following two methods). The latter approach
is appealing for the case of spatially closed
kinematic chains, considering the algebraic com­
plexity of the positional constraint equations.

3.2 Higher order loop constraint method
The higher orderCi.e., velocity and accelera­

tion) constraint equations obtained from the
direct differentiation of the position constraint
equations seen in the prior section can also be

l
l~lj [r~11

[igi : Ig2 .. ' IgNJ If2 = [rgl : rg2 ... rgN,] rf2 ,
l,pNi r,pNi

r=2, 3, ,.. , NL (24)

Eq. (24) can be expressed as a linear relationship
between the column vectors of the Jacobians

[IGffh ¢a +[I GCh ¢p= [rGff]r¢a + [rGC]r¢p,
r=2, 3,,,, , NL (26)

The (NL - I) matrix equations of (26) can be
augmented into single matrix equations as shown
below

The linear relations of Eq. (25) can be rearranged
and regrouped according to the indf:pendent and
dependent coordinate velocity sets of each chain

as

[

[IGC] -[2GC] [0] [0] 1[1¢p1
[IGC] [0] -[3GC] ... [~] 2~.P

[IGC] [0] [0] .. · -[ NLGC] NL<PP

To show the column vectors of the Jacobian
matrices, Eq. (23) can be rewritten in detail as

(20)

(19)
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Now, solving for the dependent parameters accel­
erations, we have

(36)

(34)

(37)

(39)

(40)

r;P' = [rC~] -I( ii - H( rrP, r1>))
=[rC~]ii +rV (35)

r1> = [rC~]-1 U = [rC~] U

u=[C%]1>a
ii=[C%];P·a+H(rPa,1>a)

and

where

where the subscripts, a and p, imply the indepen­
dent and coordinate sets for each open chain,

respectively.
Recalling Eqs. (34) and (35) and the following
forward kinematic relations,

(38)

and

straints is accomplished based on the application

of isomorphic transformation of kinematic
models(Freeman and Tesar, 1988) to the present­

ing dynamic modeling procedure, and is particu­
larly effective for the multiple nonredundant,

closed chain situation. Recalling Eqs. (21) and (22),
the higher order inverse kinematics of each open
chain are

Now, we select the kinematic influence coeffi­

cients relating the independent coordinate

set( rPa), and the dependent coordinate set( rPp) to

the common coordinate( u )(from the transferred
models in Eqs. (34) and (36»

(28)

(32)

(33)

;P'p= [A]-I[E] ¢"a + [A]-IQ
= [Cg] ¢;a +([ Cg] 1>a)

[
-[IC~] [2C~] [0] [0] 1[I~a 1

= - [IC~] [0] [3C~] ... [~] 2~a (27)
. .

-[IC~] [0] [0] ... [NLC~] NL1>a
Now, Eq. (27) can be expressed simply as

[A]1>p=[E]1>a

whrere [A] is an N p X N p matrix and [E] is an

Np X Na matrix, since Np = No X (NL - I). See
Appendix.

Direct inversion of matrix [A], which is assumed
to be a nonsingular, gives

[

[I Cg] - [2Cg] [0] [0] 1[1 ;P'p j
[ICg] [0] -[3Cg] [~] 2~:~

[ICg] [0] [0] -[NLCg] NL,pP

[
-[IC~][2C~] [0] [0] 1[1;P'a1
-[IC~] [0] [3C~] [0] 2;P·a

- -[:C~] [0] [0] [NL~~] NL:¢"a

[

H(2,p, 21»- H(I,p, 11» 1
+ H(3rP, 31»- HC,p, 11» (31)

H(NLrP, NL1»'- H(lrP, 11»
A notationally simple expression of Eq. (31) is

1> p= [Cg] 1>a, [Cg] = [A]-I[E] (29)

where [Cg] is the first order IKIC matrix of the

given closed-chain system required for both
inverse and forward dynamics.

To obtain the second-order kinematic relation­
ship between the dependent and independent

coordinate sets, required for the forward

dynamics, Eq. (22) can be rewritten as

[IC~]I ;P'a +[lcg]1 ;P·p=[rC~]r;P·a + [rCg]r;P'p
+ H(r,p, r1»- H(I,p, 11», r=2, 3, ... , N L (30)

The (NL -I) matrix equations can be rearranged
and regrouped as

3.3 Intermediate coordinate transfer
approach

Another method for evaluating kinematic con-

with

[C~]=[C~]-I and H(,pa, 1>a)
= - [C~]-l Va (41 )
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Now, the velocity of the dependent coordinate set
will be: expressed in terms of the independent
coordinate set as (48)

and

The final corresponding transferred model([ Gn
([Cm~a) is obtained as

[Gg]=[GC][GC]-1 (45)

(51)

For the second order modeling parame·
ters([ C%] ¢a), the joint accelerations of each open
chain are expressed, in terms of the velocity and
acceleration of the generalized coordinate set, as

where

In this section, some additional modeling

d l =[ ::::]=[rGa]~'a+([rCa]¢a)

=[rGa]~'a+[ ....~.... ],
([rCg] ¢a)

r=l, 2, ... , N L (49)

where ([rCg]¢a) is the second order kinematic
relationship between the joint parameters of the
r th chain and the independent joint parameters of
the total system. 0 is the null vector, and its
dimension is dim(rr/>a)xNaXNa. ([rCg]¢a) is the
second order kinematic relationship between the
dependent coordinate of the r th chain to the
independent coordinate set of the total system and

is of dimension (Nj-dim(rr!>a»XNaXNa.
The matrices seen in Eq. (49) can be directly
augmented to describe all joint accelerations in
termas of velocity and acceleration of the mini­
mum actuating coordinate set as

4. Dynamic Simulation of Closed
Chain Robotic Systems

l

([I Ca] ¢a) 1
([ C%] ¢a) = ([~.~~~ .~..a)

([NLGa] r/>a)

The algorithm presented in last Sees. (3.2) and (3.3),

yielding[ G%] and ([ C%] ¢a) can be applied to
general robotic mechanisms, including ones hav­
ing several internal modular structures. This,
requires judicial placement of the common inter­
mediate coordinate set.

(44)

(46)

The kinematic modeling parameters( [Gg],
([ cm '~a» obtained from above three different
methods can be augmented to describe the
kinematic modeling parameters ([ G%], ([ C%]) ~a»
required for the dynamic evaluation in Eqs. (11)

and (12).

For the first order kinematic modeling parame­
ters([ C%]), the joint velocities of each open-chain
are first expressed, in terms of velocity of the
generalized coordinate set, as

since, by definition, No = Na for the nonredun­
dant situation, and the acceleration of the depen­
dent coordinate set will also be expressed as

~'p=[GC]u + Vp=[GC][G~]-I~'a

-[GC][G~]-I Va+ Vp (43)

Thus, :the final acceleration equations is formed
as follows

r¢=[ r~a]=[[OMOJz... [:]~ ... [O]Na]¢a
rr/>p [Ga]"

=[rGa]¢a, r=l, 2, 3, ... , NL • (47)

where[ rGa] is the first order IKIC matrix relating
the joint parameters of the r 1h chain to the in­
dependent joint parameters of the total system.
[I]r is the identity matrix, which is located in r th

column block and has dimension of dim(rr!>a) x
dim(rr!>a)' [Gg]r; is the r th row of the first-order
IKIC matrix relating the dependent coordinate set
of the ?,th chain to the independent coordinate set
of the total system and is of dimension(Nj

-dim(rr/>a» x Na·
The matrices given by Eq. (47) can be directly

augmented to describe all joint velocities in terms
of the velocity of the independent coordinate set
as
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parameters required for the simulation of the
closed-chain robotic systems are obtained, which
are based on the previously computed modeling

parameters in last sections. Then, the overall
procedures of both inverse and forward dynamic
simulations are given here for the summary of the

proposed modeling methodology.
4.1 Higher order forward kinematics
For any controlled motion of the end-effector

of a given robotic system, it is required to have an

explicit expression of the controlled variables(the
output motion) in terms of the controlling

variables(the actuating joint torques). This is
accomplished by the external kinematic modeling
parameters which address the kinematic relation­

ship between the end-effector motion and the
generalized coordinate set of the given system.

Having the constrained joint relationships of Sec. 3
makes the higher order forward kinematics

straightforward by using the open chain
kinematic modeling parameters. The 1st open­

chain is usually taken to describe the end-effector
motion, where the Ist open-chain runs from the

robot base to the robot end-effector. The veloc­
ities of the end-effector are directly obtained by
inserting Eq. (47) into Eq. (21)

U = [I G¥h ¢i = [IG¥][IGa] ¢ia= [G~] ¢ia (52)

where first order external KIC matrix is

(53)

The accelerations are obtained by inserting Eqs.

(49) and (52) into Eq. (22) as

U = [IG¥]([IGa] ¢>'a + [I Ga] ¢ia)+ H(lrP. I ¢i)
=[G~]¢>'a+Ha (54)

where the second order external kinematic model­

ing parameters is

Ha=[IG¥]· [IGa]¢ia+H(lrPo1¢i) (55)

These external kinematic modeling parameters
shoule be evaluated for both forward and inverse

dynamic analysis.
4.2 Determination of underdetermined tor­

que sets
When a system is driven by the actuation of

more joints then there are kinematic freedoms, it
is called a redundantly actuated(mathematically,

under-determined) system. Multiple cooperating

manipulators and multi-fingered hands might be
included in this class of mechanism. The problem
of specifying 'optimal' torque sets for redundantly

actuated system is another active research area
considering force redundancy as well as motion
redundancy. Here, the conventional joint torque
minimization is applied to distribute the required

loads among the redundantly actuated joints.
Once the minimum actuating joint torque set is

evaluated, using the method of the previous sec­
tions, the underdetermined torque set correspond­

ing to a selected underdetermined joint set rPs is
obtained by using the principle of virtual work, as

(56)

Selecting the first order internal KIC matrix from
Eq. (48) gives the relationship as

[GWTs= Ta (57)

In order to optimize the selected joint torques, the

local joint torque minimization scheme was per­

formed by means of the criterion

min( Ts-( Ts)nV[ W]( Ts-( Ts)n)

where the desired torque vector (Ts)n is equal to

(Tmin + Tmax)j2, and Tmin and Tmax are the lower
limit and upper limit of joint torque vectors,
respectively, and [W] is a weighting matrix deter­

mined by capacity of each joint actuator.
This is a straightforward least square problem

with the solution given by

Ts=([G:Y)+Ta
+([I]-([G:y)+[GW)(Ts)n (58)

where the weighted pseudo inverse of ([ G:] T) is as

follows

The distributed torque set causes the same motion
with generally lower input load magnitudes
avoiding the torque limit of each joint than
required of a minimum actuating torque set.

4.3 Prodedures of dynamic simulation
Inverse dynamic simulation of given object
motion trajectory is executed according to the

following steps:
(1) Computes the open-chain modeling param­

eters based on the current rPi and ¢ii ([rG¥];,
H(r'/J;, r¢iJ, [rIl,];, Q(rr/li, r¢ii»'
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(2) Computes the kinematic constraint model­
ing parameters

([Gg];, ([Cg]¢la)i, [G1]i, [C1]¢la)i, [G~L and
Ha(¢" ¢l,».

(3) Computes closed-chain dynamic modeling
parameters and the required torque as

(Ta)i=[I:a];(ri;a)i+Qa(¢i, ¢li)'
(4) Computes the next minimum set of acceler­

ations( ;P'a)i+l from the inverse kinematic using

[G~]i and Ha(¢i, ¢li)'
(5) Computes the next minimum set of veloc­

ities (¢la)i+l from the internal kinematic relation­

ship as (¢la)i+l=(¢a)i+(¢la)idt.

(~) Computes the next minimum set of veloc­
ities (¢l P)i+l from the internal kinematic relation­

ship as (¢lP)i=[Gg]l¢la)i'
(7) Computes the next all joint positions ¢i+l

from the direct integration as ¢i+I=¢i+ ¢li dt.
Forward dynamic simulation of given torque

history is executed according to the following
steps:

(I) Same as 1) and 2) of inverse dynamic.
(2) Computes the next minimum set of acceler­

ations( ;P'a)i+1 from the closed-chain dynamic as

(;P'a)i== [I:a]i l
{( Ta)i - Qa( ¢i, ¢l;)}.

(3) Same as 5) and 6) of inverse dynamics.

5. Discussion

We presented two method to determine[ G!]
and ([(;:] ¢la) used to obtain the dynamic model­
ing parameters for general closed-chain system,
with position constraint differentation method
widely used in robotics. The coefficient [G:] is
used to transfer the generalized loads required by
the tree structured motion to the independent
actuation coordinate of the closed-chain
system(inverse dynamic), and the coeffi­
cient([ IC:] ¢la) is necessary to express the con­
strained motion in terms of the generalized coor­
dinate of the system(forward dynamic).

For comparison of the methods, initial
computational assessment has been performed for
the determination of those modeling parameters
require to constrain(transfer) the open chain
dynamic models to the desired closed chain actua­

tion set(¢a' The computation counts for each

major step are given in Table 1. The mechanisms
are considered "fully parallel," since Na=No=
Nj=NL' The example mechanisms are a 3 DOF
Shoulder mechanism and a 6 DOF Stewart Pla­
form. The computation numbers(shown in Table 1)

for the Intermediate Coordinate Transfer
Method(ICTM) are significantly less than those
for the Higher Order Constraint Method(HOCM)
in both cases. This is due that the computation
numbers for the HOCM are generally dependent
on the higher order polynomial of Nih while those
for the TCTM are generally dependent on the
higher order polynomial of N j , where Np is much

bigger than Nj for the 6 DOF Stewart Platform.
And also, the ICTM naturally allows for

kinematic models([ G~] and [C!] ¢la) which are
indispensable for the control of the closed chain
system. This assessment was not performed in
detail for the position constraint differentiation
method(PCDM) due to its direct dependence on
the differentiation of the holonomic constraint
equations. It should be noted, however, that, after
the first differentiation, the determination of the
first order KIC is the same as for the HOCM.
This indicates that the computation numbers for
the PCDM are also dependent on the higher order
polynomial of Np and that the differentiation
steps are in relative excess.

In order to verify the above observation, sym­
bolic generation of [G:] has been performed by
the three different methods. The PCDM involves
explicit differentiation of position constraint
equations, while the other two methods involve
symbolic generation of the first order KIC
matrix([ G¥]) of each open chain. For compari­
son, the three methods are applied to the planar
shoulder mechanism seen in Fig. 1, using Math­
ematica on an IBM Pc. Again, the ICTM is the
most efficient both in manipulation time and ease
of reducibility into the final form(given in Kang
and Freeman, 1990-b). This is expected in that
the ICTM involves multiple inversions of
matrices of the dimension of the task coordinate
set, while the other two methods involve the
single inversion of a generally larger matrix of the
dimension of the dependent coordinate set, as
seen in Table 2. Tn addition, symbolic inversion is
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Table 1 Number of multiplications and additions required to generate the kinematic modeling parame­

ters([ ct] and ([ Gt] ¢a»***

Higher order loop Intermediate coordinate

constraint method transfer method

Majou steps Mults. Adds. Major steps Mults. Adds.

Eq. (29) M i-M Eq. (3-20) NLN]*
+NLN]*

[A]-I .. 2 [TC~]-l

Eq. (29) MNa NpNa(Np-l) Eq. (3-27) NJ i-N 3

[A]-I[B] [C~]-l 2 J

Eq. (32) Np(NL-I) Eq. (3-28) NpNJ NpNj(Nj-l)

Q [CmC~]-1

Eq. (33) Nt Np(Np-l) Eq. (3-32) NpNa NpNa
[A]-lQ ([Gt]¢a)

3 DOF 360 240 180/126* 108/81*
Shoulder

6 DOF 33300 19740 2772/1692 1836/1296*
Stewart

platform

3 DOF Shoulder(Np =6, Na=No=Nj=NL=3)
6 DOF Stewart Platform(Np=30, Na=No=Nj=NL=6)

* Algorithm Parallelism in this method allows synchronous parallel computation with suitable hardware. NL

is equal to I with respect to actual elapsed time.

** The inversion of matrix with rank nis assumed to require n3 Multiplications and +n3 Additions from

[Strang, 85].

*** The computation number shown in this table does not take into account known reduction rules(symmetry,

multiplication by 0).

much more dependent on matrix size than is

numerical inversion, due to the lengthy

trigonometric nature of each matrix element.

Also, note that the apparent possibility of algor­

ithmic singularity at a place of no geometric

sigularity from the inversion between the open

tree structured coordinate set of each leg and the

common intermediate coordinate set is deceptive.

Although these algorithmic singularities may

occur during numerical evaluation, they do not

occur during symbolic evaluation(This was

proved from comparison with the result of posi­

tion constraint differentiation method; the final
denominator is the same).

When closed-chain systems form spatially com­

plicated architectures, symbolic manipulation

may not be forthcoming, and, even though pos­

sible, it is often the case that numerical evaluation

is more suitable(efficient) than symbolic evalua­

tion. As discussed before, the second and third

approaches were shown to satisfy the need to

evaluate [GtJ and ([ ctJ rfia) without numerical
differentiation which can be a main source of

simulation error.

Next, consider constraint violation which often

arises in multibody motion simulation. When the

system equations are described in terms of more

coordinate than the minimum required for the

closed-chain system, integration procedure

involve both velocity and position constraint

stabiliziltion method(Baumgrrte, 1972), by the

determination of the dependent joint velocities
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3 OOF shoulder ~ OOF stewart platform

Size
Number of Number of

Size
inversion inversion

M&
6x6 I 30x30 I

:M

M 3x3 4 6x6 7

and displacement from,Eqs. (19) and (15) after the

integration of a minimum set of equations. This is

one of the main reasons for obtaining the

dynamic equations of motion in terms of a mini­

mum I~oordinate set for closed-chain mechanisms.

Also since, when a system has a complicated

geometric structure, the joint displacement

parameters determine procedure(Eq. (15»

involves a numerical routine, it is questionable as

to how critical the constraint violation of the

second and third approaches is, when Eq. (15) is

replacl~d with the integration of the joint speeds

obtained via Eq. (19). Therefore, in some motion

simulation applications, we feel that our

proposed approaches can justifiably allow the

elimination of the difficult task of deriving the

position constraint equations(Eq. (15» of the

complicated closed-chain system.

6. Conclusion

Table 2 Matrix inversions required for the evalua­

tion of reg]

PCO

HO(

ICT

The two algorithm evaluating loop constraints

are pre:sented for kinematic and dynamic model­

ing of general closed-chain robotic systems in

terms of a system minimum set of coordinates.

These procedures are based on higher order

kinematic relationships between hypothetically

open chain reference coordinates(system Lagran­

gian coordinate) and a set of independent closed­

chain coordinates(system generalized coordi­

nates). Those algorithm with the wid ley used

position constraint differentiation method are

investigated together, both symbolically and

numerically, and discussed with respect to their

relative computational merits. Finally, the algor­

ithm s presented herein have been implemented in
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Appendix 1

Consider a(completely) closed-chain manipula­
tor system with total number of joints, bodies and
branches given by Ntj, N tb and N L respectively.
They must satisfy the relation

Ntj- Ntb=NL-2 (AI)

This is the case for most of parallel mechanisms
and multiple robots manipulating a common
object. To prove Np=NoX(Ntb-l) in Eq. (27),
the system mobility, M, is employed as

M=Na=Ntj-Np

=Nox (Ntb-l)- Ntjx (No-I) (A2)

Solving Eq. (A.2) for N p , gives, when combined
with Eq. (AI),

Np=Nox (Ntj+ INtb)=No X (NL -1)
(A3)


